Slow-γ Rhythms Coordinate Cingulate Cortical Responses to Hippocampal Sharp-Wave Ripples during Wakefulness.

نویسندگان

  • Miguel Remondes
  • Matthew A Wilson
چکیده

Behavioral changes in response to reward require monitoring past behavior relative to present outcomes. This is thought to involve a fine coordination between the hippocampus (HIPP), which stores and replays memories of past events, and cortical regions such as cingulate cortex, responsible for behavioral planning. Sharp-wave ripple (SWR)-mediated memory replay in the HIPP of awake rodents contributes to learning, but cortical responses to hippocampal SWR during wakefulness are not known. We now show that in rats, during quiet-wakefulness, cingulate neurons exhibit significant responses to SWR, as well as increased modulation by the accompanying hippocampal local field potential slow-γ oscillation, a rhythm associated with intra-hippocampal information processing. The magnitude of cingulate neurons' responses to SWR is significantly correlated with the degree of their modulation by HIPP slow-γ. We hypothesize that during pauses cingulate neurons transiently access episodic information concerning previous choices, replayed by HIPP SWR, to evaluate past trajectories in light of their outcome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow-g Rhythms Coordinate Cingulate Cortical Responses to Hippocampal Sharp-Wave Ripples during Wakefulness

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Graphical Abstract Highlights d Neurons in cingulate cortex (CG) respond to hippocampal SWR in alert rats d Cingulate and hippocampal neural activity exhibits a SWR-triggered increase in slow-g coordination d SWR modulation of CG single units correlates with their phase locking...

متن کامل

Uncovering representations of sleep-associated hippocampal ensemble spike activity

Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete abs...

متن کامل

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How ...

متن کامل

BDNF mRNA abundance regulated by antidromic action potentials and AP-LTD in hippocampus

Action-potential-induced LTD (AP-LTD) is a form of synaptic plasticity that reduces synaptic strength in CA1 hippocampal neurons firing antidromically during sharp-wave ripples. This firing occurs during slow-wave sleep and quiet moments of wakefulness, which are periods of offline replay of neural sequences learned during encoding sensory information. Here we report that rapid and persistent d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 13 7  شماره 

صفحات  -

تاریخ انتشار 2015